一傅里葉變換
傅里葉變換能將滿足一定條件的某個(gè)函數(shù)表示成三角函數(shù)(正弦和/或余弦函數(shù))或者它們的積分的線性組合。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。最初傅里葉分析是作為熱過程的解析分析的工具被提出的。
二傅里葉變換應(yīng)用
傅里葉變換在物理學(xué)、電子類學(xué)科、數(shù)論、組合數(shù)學(xué)、信號(hào)處理、概率論、統(tǒng)計(jì)學(xué)、密碼學(xué)、聲學(xué)、光學(xué)、海洋學(xué)、結(jié)構(gòu)動(dòng)力學(xué)等領(lǐng)域都有著廣泛的應(yīng)用(例如在信號(hào)處理中,傅里葉變換的典型用途是將信號(hào)分解成幅值譜——顯示與頻率對(duì)應(yīng)的幅值大?。?。
三傅里葉變換相關(guān)知識(shí)
傅里葉變換屬于諧波分析。三傅里葉變換的基本性質(zhì)
01線性性質(zhì)
02平移性質(zhì)
03微分關(guān)系
04卷積特性