一小波定義
小波(Wavelet)這一術(shù)語(yǔ),顧名思義,“小波”就是小區(qū)域、長(zhǎng)度有限、均值為0的波形。所謂“小”是指它具有衰減性;而稱之為“波”則是指它的波動(dòng)性,其振幅正負(fù)相間的震蕩形式。與Fourier變換相比,小波變換是時(shí)間(空間)頻率的局部化分析,它通過伸縮平移運(yùn)算對(duì)信號(hào)(函數(shù))逐步進(jìn)行多尺度細(xì)化,最終達(dá)到高頻處時(shí)間細(xì)分,低頻處頻率細(xì)分,能自動(dòng)適應(yīng)時(shí)頻信號(hào)分析的要求,從而可聚焦到信號(hào)的任意細(xì)節(jié),解決了Fourier變換的困難問題,成為繼Fourier變換以來在科學(xué)方法上的重大突破。有人把小波變換稱為“數(shù)學(xué)顯微鏡”。被廣泛應(yīng)用于調(diào)和分析、語(yǔ)音處理、圖像分割、石油勘探和雷達(dá)探測(cè)等等方面,也被應(yīng)用于音頻、圖像和視頻的壓縮編碼。
二小波分析
與Fourier變換相比,小波變換是空間(時(shí)間)和頻率的局部變換,因而能有效地從信號(hào)中提取信息。通過伸縮和平移等運(yùn)算功能可對(duì)函數(shù)或信號(hào)進(jìn)行多尺度的細(xì)化分析,解決了Fourier變換不能解決的許多困難問題。小波變換聯(lián)系了應(yīng)用數(shù)學(xué)、物理學(xué)、計(jì)算機(jī)科學(xué)、信號(hào)與信息處理、圖像處理、地震勘探等多個(gè)學(xué)科。數(shù)學(xué)家認(rèn)為,小波分析是一個(gè)新的數(shù)學(xué)分支,它是泛函分析、Fourier分析、樣調(diào)分析、數(shù)值分析的完美結(jié)晶;信號(hào)和信息處理專家認(rèn)為,小波分析是時(shí)間—尺度分析和多分辨分析的一種新技術(shù),它在信號(hào)分析、語(yǔ)音合成、圖像識(shí)別、計(jì)算機(jī)視覺、數(shù)據(jù)壓縮、地震勘探、大氣與海洋波分析等方面的研究都取得了有科學(xué)意義和應(yīng)用價(jià)值的成果?!⌒盘?hào)分析的主要目的是尋找一種簡(jiǎn)單有效的信號(hào)變換方法,使信號(hào)所包含的重要信息能顯現(xiàn)出來。小波分析屬于信號(hào)時(shí)頻分析的一種,在小波分析出現(xiàn)之前,傅立葉變換是信號(hào)處理領(lǐng)域應(yīng)用最廣泛、效果最好的一種分析手段。傅立葉變換是時(shí)域到頻域互相轉(zhuǎn)化的工具,從物理意義上講,傅立葉變換的實(shí)質(zhì)是把這個(gè)波形分解成不同頻率的正弦波的疊加和。正是傅立葉變換的這種重要的物理意義,決定了傅立葉變換在信號(hào)分析和信號(hào)處理中的獨(dú)特地位。傅立葉變換用在兩個(gè)方向上都無限伸展的正弦曲線波作為正交基函數(shù),把周期函數(shù)展成傅立葉級(jí)數(shù),把非周期函數(shù)展成傅立葉積分,利用傅立葉變換對(duì)函數(shù)作頻譜分析,反映了整個(gè)信號(hào)的時(shí)間頻譜特性,較好地揭示了平穩(wěn)信號(hào)的特征。
小波變換是一種新的變換分析方法,它繼承和發(fā)展了短時(shí)傅立葉變換局部化的思想,同時(shí)又克服了窗口大小不隨頻率變化等缺點(diǎn),能夠提供一個(gè)隨頻率改變的時(shí)間一頻率窗口,是進(jìn)行信號(hào)時(shí)頻分析和處理的理想工具。它的主要特點(diǎn)是通過變換能夠充分突出問題某些方面的特征,因此,小波變換在許多領(lǐng)域都得到了成功的應(yīng)用,特別是小波變換的離散數(shù)字算法已被廣泛用于許多問題的變換研究中。從此,小波變換越來越引起人們的重視,其應(yīng)用領(lǐng)域來越來越廣泛。
現(xiàn)在,它已經(jīng)在科技信息產(chǎn)業(yè)領(lǐng)域取得了令人矚目的成就。電子信息技術(shù)是六大高新技術(shù)中重要的一個(gè)領(lǐng)域,它的重要方面是圖象和信號(hào)處理。現(xiàn)今,信號(hào)處理已經(jīng)成為當(dāng)代科學(xué)技術(shù)工作的重要部分,信號(hào)處理的目的就是:準(zhǔn)確的分析、診斷、編碼壓縮和量化、快速傳遞或存儲(chǔ)、精確地重構(gòu)(或恢復(fù))。從數(shù)學(xué)地角度來看,信號(hào)與圖象處理可以統(tǒng)一看作是信號(hào)處理(圖象可以看作是二維信號(hào)),小波分析的許多分析和應(yīng)用問題,都可以歸結(jié)為信號(hào)處理問題?,F(xiàn)在,對(duì)于其性質(zhì)隨時(shí)間是穩(wěn)定不變的信號(hào)(平穩(wěn)隨機(jī)過程),處理的理想工具仍然是傅立葉分析。但是在實(shí)際應(yīng)用中的絕大多數(shù)信號(hào)是非穩(wěn)定的(非平穩(wěn)隨機(jī)過程),而特別適用于非穩(wěn)定信號(hào)的工具就是小波分析。
三小波變換應(yīng)用
小波分析的應(yīng)用領(lǐng)域十分廣泛,它包括:數(shù)學(xué)領(lǐng)域的許多學(xué)科;信號(hào)分析、圖象處理;量子力學(xué)、理論物理;軍事電子對(duì)抗與武器的智能化;計(jì)算機(jī)分類與識(shí)別;音樂與語(yǔ)言的人工合成;醫(yī)學(xué)成像與診斷;地震勘探數(shù)據(jù)處理;大型機(jī)械的故障診斷等方面;例如,在數(shù)學(xué)方面,它已用于數(shù)值分析、構(gòu)造快速數(shù)值方法、曲線曲面構(gòu)造、微分方程求解、控制論等。在信號(hào)分析方面的濾波、去噪聲、壓縮、傳遞等。在圖象處理方面的圖象壓縮、分類、識(shí)別與診斷,去污等。在醫(yī)學(xué)成像方面的減少B超、CT、核磁共振成像的時(shí)間,提高分辨率等。
1、小波分析用于信號(hào)與圖象壓縮是小波分析應(yīng)用的一個(gè)重要方面。它的特點(diǎn)是壓縮比高,壓縮速度快,壓縮后能保持信號(hào)與圖象的特征不變,且在傳遞中可以抗干擾。基于小波分析的壓縮方法很多,比較成功的有小波包最好基方法,小波域紋理模型方法,小波變換零樹壓縮,小波變換向量壓縮等;
2、小波分解可以覆蓋整個(gè)頻域(提供了一個(gè)數(shù)學(xué)上完備的描述;
3、小波變換具有“變焦”特性,在低頻段可用高頻率分辨率和低時(shí)間分辨率(寬分析窗口),在高頻段,可用低頻率分辨率和高時(shí)間分辨率(窄分析窗口);
4、小波變換實(shí)現(xiàn)上有快速算法(Mallat小波分解算法);
從圖像處理的角度看,小波變換存在以下幾個(gè)優(yōu)點(diǎn):
1、小波分解可以覆蓋整個(gè)頻域(提供了一個(gè)數(shù)學(xué)上完備的描述)
2、小波變換通過選取合適的濾波器,可以極大的減小或去除所提取得不同特征之間的相關(guān)性
3、小波變換具有“變焦”特性,在低頻段可用高頻率分辨率和低時(shí)間分辨率(寬分析窗口),在高頻段,可用低頻率分辨率和高時(shí)間分辨率(窄分析窗口)
4、小波變換實(shí)現(xiàn)上有快速算法(Mallat小波分解算法)
下一篇:總諧波失真